Liechtenstein Norway **Norway** grants grants

BUILDING MOMENTUM FOR THE LONG-TERM CCS DEPLOYMENT IN THE CEE REGION

CCS4CEE - Building momentum for CCS deployment in the CEE region

Michał Wendołowski (Bellona Europa)

14 June 2023



Bellona Europa is an independent non-profit organisation that meets environmental and climate challenges head on. We are solutions-oriented and have a comprehensive and cross-sectoral approach to assess the economics, climate impacts and technical feasibility of necessary climate actions. To do this, we work with civil society, academia, governments, institutions, and industries.

Our topics and work areas

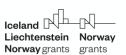
Industry

- CCS
- Hydrogen use
- Circularity
- CO₂ infrastructure

Sustainable Finance

- Private/public funding
- Public procurement
- Competitiveness
- Greenwashing

Energy Systems


- Hydrogen production
- Grids (electrification)

Cities and Transport

- Construction
- Waste incinerators
- Fuels

Carbon Accounting

- CDR
- Climate impact of circular economy
- Green claims

About the CCS4CEE project

WP3

Assessment of current state, past experiences and potential of CCS deployment in CEE region

- Analytical reports, focusing on the current state, past experiences and potential for CCS deployment in the target countries.
- Stakeholder engagement events (workshops and seminars)

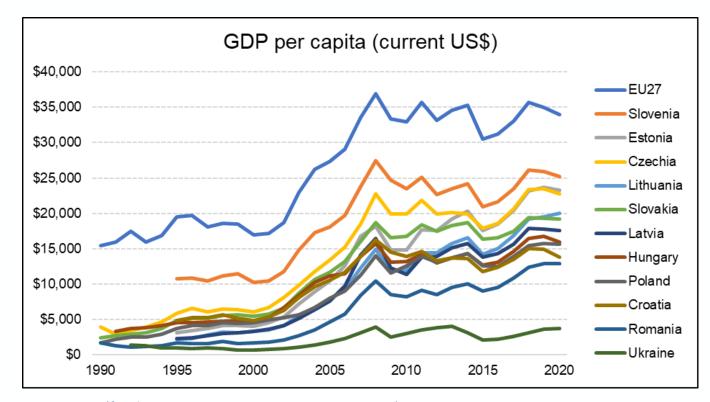
WP4

Developing policy roadmaps for national CCS deployment and regional cooperation

- Integrated policy roadmap prepared based on inputs delivered by partners
- Stakeholder events focusing on policy roadmaps (workshops and seminars)

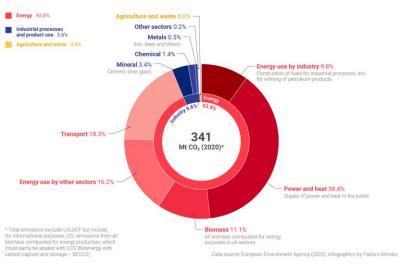
WP5

From roadmaps to implementation: supporting the development of flagship CCS initiative in the CEE region

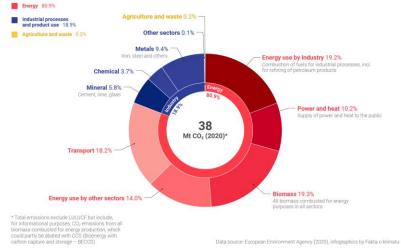

- Networking and capacitybuilding for implementing CCS initiatives in target countries
- Setting up a dedicated platform to ensure that the network will last beyond the project duration.

- WiseEuropa (PL) Lead partner
- Bellona Expert partner
- CIVITTA (LV)
- Energy Policy Group (RO)
- Institute for European Integration (CZ)

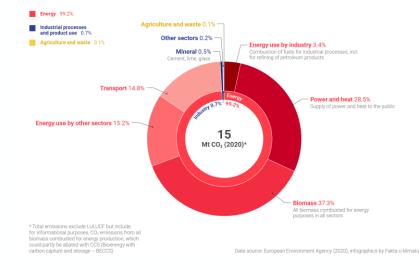
CEE economy


Source: EPG (for the CCS4CEE WP3 summary report, 2021)

- Steady increase in GDP and a shift towards service-based economies in CEE
- GDP in CEE still below EU average
- Industry plays an important role in CEE, more than in western European economies
- Manufacturing is a key sector for CEE economies, particularly production of cement and lime, glass, and metals



Emission profiles of CEE countries vary


CO, EMISSIONS IN POLAND BY SECTORS

CO, EMISSIONS IN SLOVAKIA BY SECTORS

CO, EMISSIONS IN ESTONIA BY SECTORS

THE BIGGEST EMITTERS IN ESTONIA

EU ETS covered emissions of greenhouse gases in 2021

INSTALLATIONS WITH EMISSIONS (Mt CO2eq)

• above 250 000 tonnes of CO2eq

Sectors:

- Heat and power
- Oil refining
- 40 000-250 000 tonnes of CO2eq

Sectors:

Heat and power, Oil refining

HOW TO READ MINI CHARTS

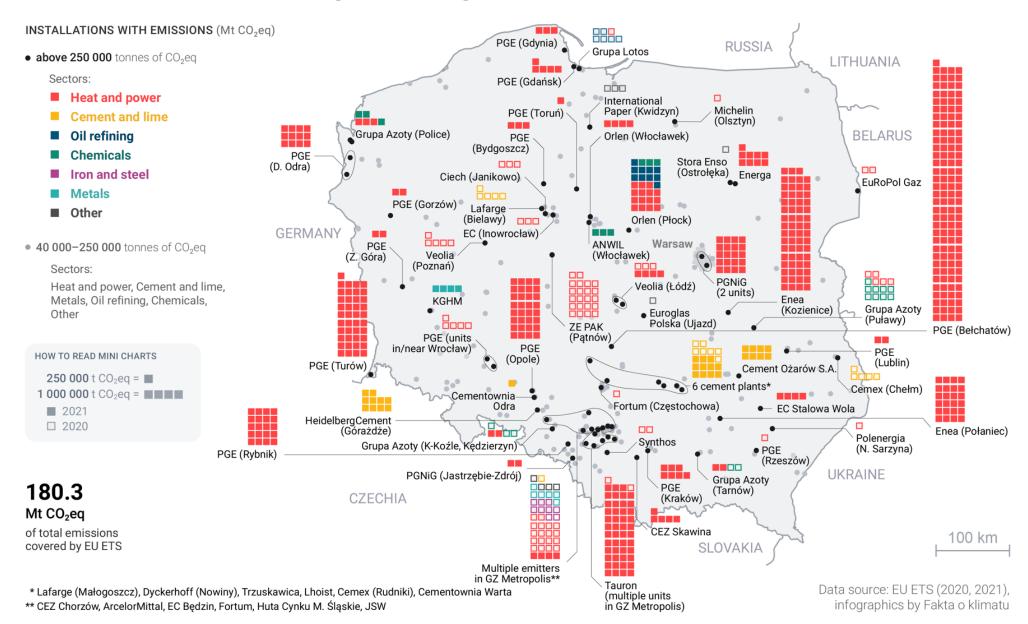
250 000 t CO₂eq =

1 000 000 t CO₂eq =

6.9 Mt CO₂eq of total emissions covered by EU ETS

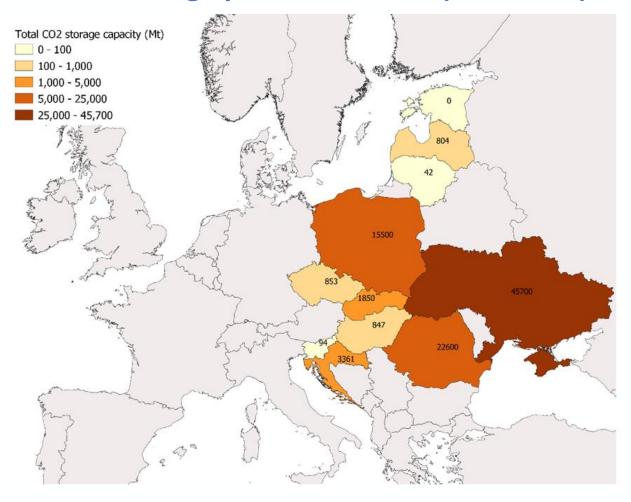
THE BIGGEST EMITTERS IN SLOVAKIA

EU ETS covered emissions of greenhouse gases in 2021


INSTALLATIONS WITH EMISSIONS (Mt CO2eq) • higher than 250 000 tons of CO2eq Sectors: Heat and power Cement and lime POLAND Chemicals **CZECHIA** Oil refining OFZ Metals • 40 000-250 000 tonnes of CO2eq Cemmac Považská cementáreň Sectors: Heat and power, Cement Carmeuse and lime, Oil refining, Slovakia Kvóty TEKO Iron and steel, Other Elektrárne Nováky SMZ Jelšava Danucem SK, Slovalco cementáreň PPC Malženice Rohožník **UKRAINE** Danucem SK HOW TO READ MINI CHARTS Cementáreň Turňa 250 000 t CO₂eq = 1 000 000 t CO₂eq = Duslo Šaľa Slovnaft U. S. Steel Bratislava Košice Ferroenergy Petrochémia HUNGARY **AUSTRIA** Tepláreň Slovnaft

20.8 Mt CO₂eq

of total emissions covered by EU ETS

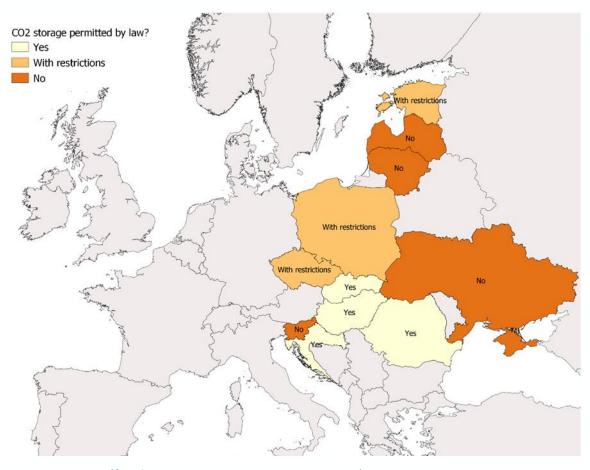

THE BIGGEST EMITTERS IN POLAND

EU ETS covered emissions of greenhouse gases in 2020 and 2021

CO2 storage potential in CEE (indicative)

- Total storage (indicative): ca. 92 Gt CO2
- For comparison:

CEE (incl. Ukraine) CO2 emissions in 2019: < 1Gt CO2



CCS experience in **CEE**

- History of academic research
- Experience with international research projects
- Experience with CO2-EOR and -EGR in Hungary, Romania and Croatia
- Experience with CCU
- CCS testing and demonstration projects (abandoned)

CCS-relevant regulations and policies

- Regulatory environments of partner countries vary, particularly on CO2 storage and transportation
- Ban on storage in some countries (despite including CCS in their long-term strategies)
- Long-term national strategies and plans rarely mention CCS
- High costs and low maturity associated with CCS in government plans
- Perceived as a transition solution only

Source: EPG (for the CCS4CEE WP3 summary report)

CEE stakeholders perception

- Stakeholders are cautious about CCS
 - high costs
 - lack of clear government support and financing
 - challenging administrative procedures
 - issues related to risks of CO2 leakage from geological storage, as well as the complexity of the required storage infrastructure
- Preference for CCU (including CO2-EOR) over CCS
- Importance of regional and inter-sectoral cooperation

Public support

- lack of knowledge about CCS
- attitudes towards climate action in partner countries are also less favourable than in the rest of EU countries
- history of opposition to other similar projects or even CCS projects

CCS deployment roadmaps for **CEE** – our key recommendations

	Create national CCS platforms, and join or increase engagement in European and international ones
(Include CCS in national and sectoral decarbonisation strategies
	Allocate public finance to CCS deployment from pilot projects to their industrial scale-up
	Identify industrial clusters, potential transport networks and storage sites to create CCS hubs
	Seek cross-sectoral and regional cooperation opportunities
(Put in place a regulatory framework that removes obstacles and inconsistencies across legislation
	Engage with local communities and other stakeholders to build public support for CCS

CCS projects in CEE timeline – ca. 5 Mtpa of CO2 captured and stored by 2030

Go4ECOPlanet

Capture: Cryocap tech at cement plant in Poland

Transport: ECO2CEE

Storage: North Sea, onshore Poland from 2030

Companies: Lafarge, Air Liquide

Operational: 2027

Status: FEED documentation, environmental

decision, construction permit

Volume: 1.2 Mtpa

EU support: Innovation Fund in 2022

ECO2CEE

Capture: Go4ECOPlanet; refinery in PL, possibly

other emitters

Transport: part of ECO2CEE (rail->Port of Gdańsk-

>ship)

Storage: North Sea, possibly Baltic Sea

Companies: Air Liquide, PKN Orlen, Lafarge Polska

Operational: 2027

Status: feasibility study (railway transport) ongoing

Volume: 3 Mt (2027) -> 9 Mt (2030+) EU support: PCI (planned application for CEF)

Salonit Anhovo CCS project

Capture: at cement plant in Slovenia

Transport: not specified Storage: not specified Companies: Salonit Anhovo

Operational: 2030

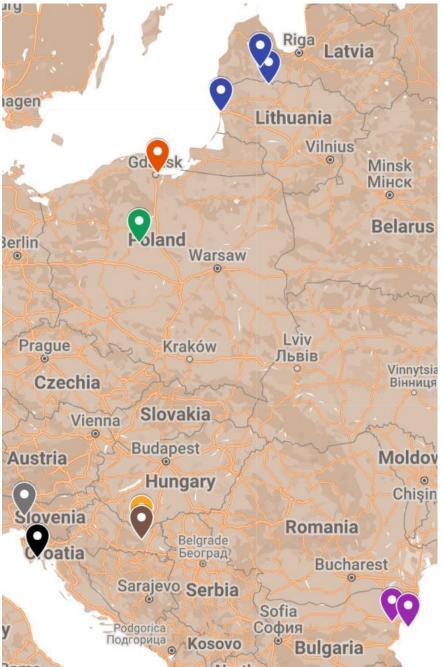
Status: not specified Volume: 0.5 Mtpa

KOdeCO net zero

Capture: end-of-pipe adsorption at cement

plant in Croatia

Transport: shipping


Storage: Mediterranean Sea

Companies: Holcim Operational: 2028

Status: not specified Volume: 0.367 Mtpa

EU support: Selected for Just Transition Fund;

applied for Innovation Fund in 2023

More projects are being prepared but not yet announced

Baltic CCS Consortium

Type: Full CCS value chain

Capture: oxyfuel kiln at cement plants (in LT and LV)

Transport: rail -> CO2 terminal -> ship

Storage: North Sea/Baltic (looking for partners)
Companies: KN, Akmenes Cementas, Schwenk,

Mitsui, Larvik Shipping

Operational: 2030

Status: project concept / before permitting Volume: 32 Mt captured (over lifetime), 20 Mt net

reduction (over lifetime)

EU support: PCI candidate

CO2NTESSA + Geothermal CCS Croatia

Capture: oxyfuel tech at cement plant in Croatia

Transport: pipeline

Storage: onshore saline aguifer, combined with

geothermal or in exploited gas fields

Companies: Nexe, Croatian Hydrocarboin Agency,

INA, Plinacro, Heidelberg Materials*

Operational: 2029

Status: project documentation in progress Volume: >0.7 Mtpa (capture); >25 kt (1st stage)

-> possibly 100 Mt of total storage capacity

16

EU support: connected to a PCI candidate; applied for

Innovation Fund in 2023

ANRAV

Type: Full CCS value chain

Capture: amine+oxyfuel capture at cement

plant (in BG)

Transport: onshore+offshore pipelines

Storage: depleted gas fields in the Black Sea

Companes: Devnya Cement (H.Materials);

Petroceltic

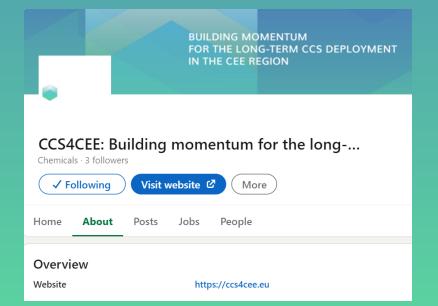
Operational: 2028

Status: feasibility study completed

Volume: 0.8 Mtpa (Ph. 1) to 5 Mtpa (Ph. 2-3)

EU support Innovation Fund

^{*}HM cement plant in Beremend (Hungary)



Building momentum for the long-term CCS deployment in the CEE region

Learn More

Thank you!

Contact details:

Michał Wendołowski Senior Climate Technology and Policy Manager (Central and Eastern Europe) Bellona Europa michal@bellona.org

Iceland Norway
Norway grants grants

BUILDING MOMENTUM

FOR THE LONG-TERM CCS DEPLOYMENT
IN THE CEE REGION

Results of the CCS4CEE project

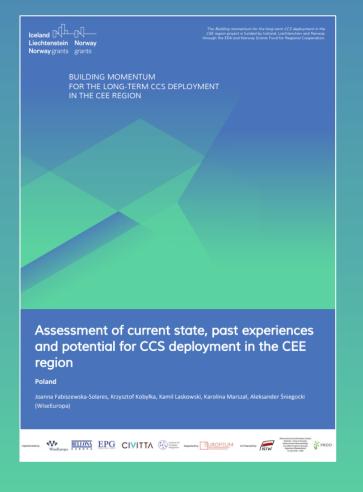
Opportunities and barriers to the development of CCS technology in Poland and how to overcome them?

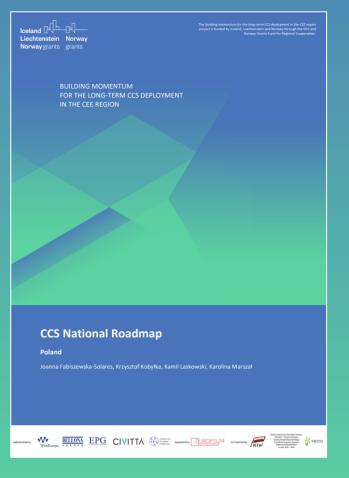
Krzysztof Kobyłka (WiseEuropa)

14 June 2023

WiseEuropa – who we are?

15+
Analysts and experts




10+
Fellows

2021

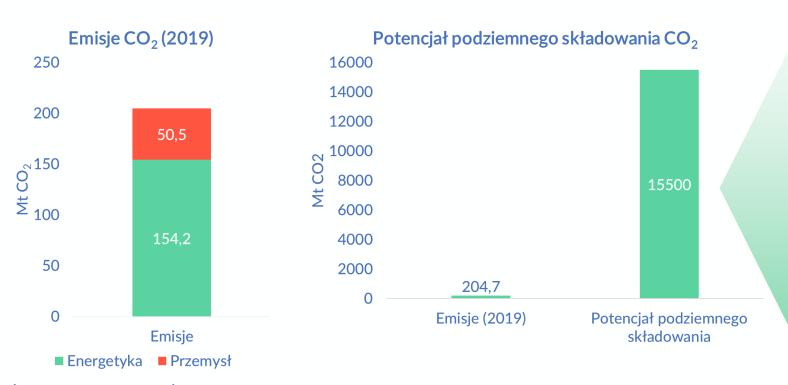
2022

2023

Liechtenstein Norway **Norway** grants grants

BUILDING MOMENTUM FOR THE LONG-TERM CCS DEPLOYMENT IN THE CEE REGION

Determinants and barriers to the deployment of CCS technology in Poland



na lata 2018 - 2030

Determinants of CCS technology deployment in Poland

Źródło: Europejska Agencja Środowiska i Polski Instytut Geologiczny

Extensive experience (pilot projects and R&D)

Robust research facilities (including research infrastructure)

Vast majority of identified geological potential located onshore

Barriers to the development of CCS technology in Poland

Stakeholder perspective

- Excessive financial requirements for potential CCS project developers
- Limited possibilities of obtaining financing
- Regulatory barriers (lack of a permit for onshore CO2 storage, inflated standards, ambiguity on ETS emissions accounting...)
- Public acceptance

Administrative costs of onshore CO2 storage in Poland

Financial security

Security of funds

Even several hundred milion PLN

Liechtenstein Norway **Norway** grants grants

BUILDING MOMENTUM FOR THE LONG-TERM CCS DEPLOYMENT IN THE CEE REGION

How to overcome barriers – Polish roadmap

na lata 2018 - 2030

Thematic areas

- Transition from the research and development phase, pilot and demonstration phase to the commercial phase
- 2) Legal and institutional environment
- 3) Stakeholder engagement, cooperation and dissemination of know-how
- 4) Public acceptance of CCS

Timeframe:

- Short-term measures
 - by 2025
- Medium-term measures
 - by 2030
- Long-term measures
 - by 2040

Transition from the research and development phase, pilot and demonstration phase to the commercial phase

Steps to be taken by 2025

- Assessment of 'CCS readiness' of Polish power and industrial plants
- Update of geological storage potential in Poland
- Focusing on already available technologies rather than waiting for the best solutions

Steps to be taken by 2030

- Conducting feasibility studies of CCS installations for power and industrial plants
- In the pilot and demonstration phase, CO2 should be transported by conventional means of transport
- Implementation of different parts of the CCS value chain by separate entities, but in a coordinated manner

Steps to be taken by 2040

- In-depth assessment of the most efficient method of CO2 transport in the long term, taking into account geographical differences
- Burdening the state or a consortium of multiple companies with the cost of building a pipeline network
- Location of new emitting energy and industrial plants near CO2 storage sites
- Ensure that the development of CCS technology is consistent with the development of the hydrogen economy

Legal and institutional environment

Steps to be taken by 2025

- Permit for exploration and prospecting of onshore CO2 underground storage complexes and onshore CO2 storage
- Ensuring that CO2 exports from Poland to the North Sea are legal under international law
- Reduced financial burden (less financial security required, deduction of all captured and permanently stored emissions in the EU ETS)
- Develop a long-term, national strategy for decarbonisation of individual sectors (especially industrial and district heating) including CCS
- Raising the issue of the disbursement of CO2 emissions trading funds under the EU ETS

Steps to be taken by 2030

Adoption of ISO standards on CCS

Steps to be taken by 2040

• Implementation of CCS technologies in the context of just transition process

Stakeholder engagement, cooperation and dissemination of know-how

Steps to be taken by 2025

- Awareness of regulatory barriers and challenges related to public acceptance of CCS technology
- Build links between suppliers of CCS technologies (research institutes, private companies) with their potential customers, i.e. emitters in the energy and industrial sectors
- Forming international consortia with more experienced foreign CCS players
- Identify CCS hubs and clusters

Steps to be taken by 2030

• Implementation of CCS hubs and clusters

Steps to be taken by 2040

- Sector coupling for CO2 linking CO2 capture plants to producers of goods where CO2 is used in production
- International (regional) investment in CO2 transport networks, benefiting from economies of scale

Public acceptance of CCS

Steps to be taken by 2025

- Updated assessment of public support for CCS technology
- Involvement of local authorities in the promotion of CCS investments
- Creation of information centres, websites, portals with a Q&A section

Steps to be taken by 2030

- Success of the first pilot and demonstration CCS plants (primarily in terms of safety)
- Raising awareness of climate change and its risks and highlighting CCS as a solution to the problem
- Organisation of excursions to already existing underground CO2 storage sites in Poland (Borzęcin, Kaniów) or underground gas storage facilities

Steps to be taken by 2040

- Education and dialogue on storage safety (fears of CO2 leakage)
- "Story" of CCS in the local economic context highlighting the impact of CCS installations in saving the local/regional industrial base and making it more competitive
- Regulations and standards should be strictly respected by investors and state authorities

BUILDING MOMENTUM

FOR THE LONG-TERM CCS DEPLOYMENT
IN THE CEE REGION

Our impact

What do we do to have an impact?

- 1. Official involvement of project partners in the law-making process
- Consultations/bilateral meetings with representatives of ministries
- 3. Engagement of project partners or project stakeholders in facilitating national, regional and transnational initiatives to support the CO2 capture
- 4. Letters of intent from representatives of different target groups, expressing the intent or need of developing future transnational/national pilot projects focusing on CO2 capture

Key Performance Indicators

Warszawa, 15 listopada 2021 r.

Fundacia Warszawski Instytu

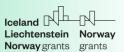
Studiów Ekonomicznych i Europejskich

WiseEuropa

Ul. Królewska 2/26

00-065 Warszawa

Ministerstwo Klimatu i Środowiska


Szanowni Państwo,

jako organizacja pozarządowa zasnęażowana w realizację projektów z zakresu wdrażania technologii wychwytywania i składowania dwutlenku węgla w Polsce chcielibyśmy zgłość wwagi do projektu ustawy o zmianie ustawy Prawo geologiczne i górnicze oraz niektórych innych ustaw (nr UD280 w Wykazie prac legislacyjnych i programowych Rady Ministrów; dalej: projekt ustawy).

- Z zadowoleniem przyjmujemy większość proponowanych zmian odnoszących się do podziemnego składowania dwutienku węgla. W wielu miejscach pokrywają się one z rekomendacjami, które wypracowaliśmy w ramach realizowanych projektów. Czujemy się jednak zobowiązani do wskazania obszarów, w których regulacje jeszcze nie sprzyjają odpowiednio rozwojowi technologii CCS, a także do wyrażenia wątpliwości co do celowości
- Ograniczenia w poszukiwaniu i rozpoznawaniu kompleksów podziemneg składowania dwutlenku wegla

Nowelizacja ustawy z dnia z dnia 9 czerwca 2011 r. – Prawo geologiczne i górnicze¹ (dalej: PGG) wprowadza szereg udogodnień dla podmiotów zamierzających prowadzić

¹ Dz. U. z 2021 r. poz. 1420.

https://ccs4cee.eu/

BUILDING MOMENTUM
FOR THE LONG-TERM CCS DEPLOYMENT
IN THE CEE REGION

Contact details:

Krzysztof Kobyłka
Head of Energy and Climate Program
WiseEuropa
krzysztof.kobylka@wise-europa.eu

Thank you for attention